Lang C hain (랭 체 인)
공식 문서 읽기 프로그램
分类1 | 分类2 | 进展 |
---|---|---|
LCEL | Interface | |
Streaming | ||
How to | Route between multiple runnables✅ Cancelling requests✅ Use RunnableMaps✅ Add message history (memory) | |
Cookbook | ✅Prompt + LLM ✅Multiple chains ✅Retrieval augmented generation (RAG) ✅Querying a SQL DB Adding memory ✅Using tools Agents | |
Model I/O | Quickstart | |
Concepts | ✅ | |
Prompts | Quick Start Example selectors Few Shot Prompt Templates Partial prompt templates Composition | |
LLMs | Quick Start Streaming Caching Custom chat models Tracking token usage Cancelling requests Dealing with API Errors Dealing with rate limits OpenAI Function calling Subscribing to events Adding a timeout | |
Chat Models | ||
Output Parsers | ✅ | |
Retrieval | 首页/概念 | |
Document loaders | ||
Text Splitters | ||
Retrievers | ||
Text embedding models | ||
Vector stores | ||
Indexing | ||
Experimental | ||
Chains | ✅ | |
Agents | ||
More | ||
Guides | ||
User cases | SQL | |
Chatbots | ||
Q&A with RAG | ||
Tool use | ||
Interacting with APIs | ||
Tabular Question Answering | ||
Summarization | ||
Agent Simulations | ||
Autonomous Agents | ||
Code Understanding | ||
Extraction |
랭 체 인 생태 계
장 점 : L lama Index 보다 훨씬 더 나은 Ja vas cript 지원 (L lama 는 TS 를 지원 하지만 문서 및 API 는 Python 버전 보다 훨씬 나쁘 습니다)
생태 :
개념
LL M 및 Chat Model
모델 : LL M 과 채 팅 모델 의 두 가지 유형 을 포함 합니다 .
import { OpenAI, ChatOpenAI } from "@langchain/openai";
const llm = new OpenAI({
modelName: "gpt-3.5-turbo-instruct",
});
const chatModel = new ChatOpenAI({
modelName: "gpt-3.5-turbo",
});
Anth rop ic 모델 은 XML 에 가장 적합 하며 Open AI 모델 은 J SON 에 가장 적합 합니다 .
Typ es cript 버전
설치
npm install langchain @langchain/core @langchain/community @langchain/openai langsmith
LangChain所有第三方的库:链接
빠른 시작
import { ChatOpenAI } from "@langchain/openai";
async function main() {
const chatModel = new ChatOpenAI({});
let str = await chatModel.invoke("what is LangSmith?");
console.log(str);
}
main();
구성
OpenAI可配置的内容:见官网
모델 이름 / 온 도 / API 키 / Base URL
import { OpenAI } from "@langchain/openai";
const model = new OpenAI({
modelName: "gpt-3.5-turbo",
temperature: 0.9,
openAIApiKey: "YOUR-API-KEY",
configuration: {
baseURL: "https://your_custom_url.com",
},
});
J SON 모 드
const jsonModeModel = new ChatOpenAI({
modelName: "gpt-4-1106-preview",
maxTokens: 128,
}).bind({
response_format: {
type: "json_object",
},
});
见定义
함 수 호출 / 도구
첫 번째 : To ols
최신 도구 인터페 이스 사용
const llm = new ChatOpenAI();
const llmWithTools = llm.bind({
tools: [tool],
tool_choice: tool,
});
const prompt = ChatPromptTemplate.fromMessages([
["system", "You are the funniest comedian, tell the user a joke about their topic."],
["human", "Topic: {topic}"]
])
const chain = prompt.pipe(llmWithTools);
const result = await chain.invoke({ topic: "Large Language Models" });
파 서 지정
import { JsonOutputToolsParser } from "langchain/output_parsers";
const outputParser = new JsonOutputToolsParser();
두 번째 함 수 : 함 수 호출
두 가지 방법이 있습니다 :
** 호출 할 때 전달 되는 함 수 **
const result = await model.invoke([new HumanMessage("What a beautiful day!")], {
functions: [extractionFunctionSchema],
function_call: { name: "extractor" },
});
** 모델 에 함 수 바 인 딩 **
동일한 모델을 계속 재 사 용 할 수 있습니다 .
const model = new ChatOpenAI({ modelName: "gpt-4" }).bind({
functions: [extractionFunctionSchema],
function_call: { name: "extractor" },
});
API 정의
두 가지 방법이 있습니다 .
const extractionFunctionSchema = {
name: "extractor",
description: "Extracts fields from the input.",
parameters: {
type: "object",
properties: {
tone: {
type: "string",
enum: ["positive", "negative"],
description: "The overall tone of the input",
},
word_count: {
type: "number",
description: "The number of words in the input",
},
chat_response: {
type: "string",
description: "A response to the human's input",
},
},
required: ["tone", "word_count", "chat_response"],
},
};
** Z od 사용 **
import { ChatOpenAI } from "@langchain/openai";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
import { HumanMessage } from "@langchain/core/messages";
const extractionFunctionSchema = {
name: "extractor",
description: "Extracts fields from the input.",
parameters: zodToJsonSchema(
z.object({
tone: z
.enum(["positive", "negative"])
.describe("The overall tone of the input"),
entity: z.string().describe("The entity mentioned in the input"),
word_count: z.number().describe("The number of words in the input"),
chat_response: z.string().describe("A response to the human's input"),
final_punctuation: z
.optional(z.string())
.describe("The final punctuation mark in the input, if any."),
})
),
};
모델 I / O
로 더
Ret rie ver (중 요)
두 종류 로 나 뉘 다 .
- 자기 가져 오 기
- 第三方集成
Retriever | 说明 |
---|---|
Knowledge Bases for Amazon Bedrock | |
Chaindesk Retriever | |
ChatGPT Plugin Retriever | |
Dria Retriever | |
Exa Search | |
HyDE Retriever | |
Amazon Kendra Retriever | |
Metal Retriever | |
Supabase Hybrid Search | |
Tavily Search API | |
Time-Weighted Retriever | |
Vector Store | |
Vespa Retriever | |
Zep Retriever |
유사 도 : 점 수 임 계 값
점 수 임 계 값 은 백 분 율 입니다 .
-
- 0 완전 일치
-
- 95 정도 가 될 수 있습니다 .
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import { OpenAIEmbeddings } from "@langchain/openai";
import { ScoreThresholdRetriever } from "langchain/retrievers/score_threshold";
async function main() {
const vectorStore = await MemoryVectorStore.fromTexts(
[
"Buildings are made out of brick",
"Buildings are made out of wood",
"Buildings are made out of stone",
"Buildings are made out of atoms",
"Buildings are made out of building materials",
"Cars are made out of metal",
"Cars are made out of plastic",
],
[{ id: 1 }, { id: 2 }, { id: 3 }, { id: 4 }, { id: 5 }],
new OpenAIEmbeddings()
);
const retriever = ScoreThresholdRetriever.fromVectorStore(vectorStore, {
minSimilarityScore: 0.95, // Finds results with at least this similarity score
maxK: 100, // The maximum K value to use. Use it based to your chunk size to make sure you don't run out of tokens
kIncrement: 2, // How much to increase K by each time. It'll fetch N results, then N + kIncrement, then N + kIncrement * 2, etc.
});
const result = await retriever.getRelevantDocuments(
"building is made out of atom"
);
console.log(result);
};
main();
// [
// Document {
// pageContent: 'Buildings are made out of atoms',
// metadata: { id: 4 }
// }
// ]
** 자체 쿼 리 (구 조 화된 데이터를 쿼 리 하는 데 적합) **
수 파 베이 스
구 문 분석 기
解析器 | 说明 | |
---|---|---|
常见 | String output parser | |
格式化 | Structured output parser | 方便自定义 |
OpenAI Tools | 常用 | |
标准格式 | JSON Output Functions Parser | 常用 |
HTTP Response Output Parser | ||
XML output parser | ||
列表 | List parser | 常用 |
Custom list parser | 常用 | |
其它 | Datetime parser | 有用 |
Auto-fixing parser |
여러 체 인
직 렬
두 가지 방법
. pip es
R unna ble Se qu ence . from ([ ])
. pip es 사용
const prompt = ChatPromptTemplate.fromMessages([
["human", "Tell me a short joke about {topic}"],
]);
const model = new ChatOpenAI({});
const outputParser = new StringOutputParser();
const chain = prompt.pipe(model).pipe(outputParser);
const response = await chain.invoke({
topic: "ice cream",
});
Run na ble Se qu ence . from 사용
const model = new ChatOpenAI({});
const promptTemplate = PromptTemplate.fromTemplate(
"Tell me a joke about {topic}"
);
const chain = RunnableSequence.from([
promptTemplate,
model
]);
const result = await chain.invoke({ topic: "bears" });
대 량 및 병 렬
L CE L 자체 지원
const chain = promptTemplate.pipe(model);
await chain.batch([{ topic: "bears" }, { topic: "cats" }])
Run na ble Map 사용
const model = new ChatAnthropic({});
const jokeChain = PromptTemplate.fromTemplate(
"Tell me a joke about {topic}"
).pipe(model);
const poemChain = PromptTemplate.fromTemplate(
"write a 2-line poem about {topic}"
).pipe(model);
const mapChain = RunnableMap.from({
joke: jokeChain,
poem: poemChain,
});
const result = await mapChain.invoke({ topic: "bear" });
분 기
두 가지 방법
- 실행 가능한 분 기
- 사용자 지정 팩 토 리 기능
중지 , 재 시 도 , 폴 백
N / A
일반적인 예 : 직 렬
import { PromptTemplate } from "@langchain/core/prompts";
import { RunnableSequence } from "@langchain/core/runnables";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { ChatOpenAI } from "@langchain/openai";
async function main() {
const prompt1 = PromptTemplate.fromTemplate(
`What is the city {person} is from? Only respond with the name of the city.`
);
const prompt2 = PromptTemplate.fromTemplate(
`What country is the city {city} in? Respond in {language}.`
);
const model = new ChatOpenAI({});
const chain1 = prompt1.pipe(model).pipe(new StringOutputParser());
const combinedChain = RunnableSequence.from([
{
city: chain1,
language: (input) => input.language,
},
prompt2,
model,
new StringOutputParser(),
]);
const result = await combinedChain.invoke({
person: "Obama",
language: "German",
});
console.log(result);
}
main();
结果见这里
RA G
로 드 / Lo ader / E TL
分类 | 项目 | |
---|---|---|
本地资源 | Folders with multiple files ChatGPT files CSV files Docx files EPUB files JSON files JSONLines files Notion markdown export Open AI Whisper Audio PDF files PPTX files Subtitles Text files Unstructured | |
Web资源 | Cheerio Puppeteer Playwright Apify Dataset AssemblyAI Audio Transcript Azure Blob Storage Container Azure Blob Storage File College Confidential Confluence Couchbase Figma GitBook GitHub Hacker News IMSDB Notion API PDF files Recursive URL Loader S3 File SearchApi Loader SerpAPI Loader Sitemap Loader Sonix Audio Blockchain Data YouTube transcripts |
更通用的ELT工具:unstructured
분 할
파이 썬 버전
安装LangChain全家桶
pip install langchain langchain-community langchain-core "langserve[all]" langchain-cli langsmith langchain-openai
最新版本号:0.2.6(截止到2024年7月3日)
허 브
Lang Smith 에는 Git hub 와 비슷한 허 브 가 있습니다 .
例如RLM
import { UnstructuredDirectoryLoader } from "langchain/document_loaders/fs/unstructured";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { MemoryVectorStore } from "langchain/vectorstores/memory"
import { OpenAIEmbeddings, ChatOpenAI } from "@langchain/openai";
import { pull } from "langchain/hub";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { createStuffDocumentsChain } from "langchain/chains/combine_documents";
async function main() {
const options = {
apiUrl: "http://localhost:8000/general/v0/general",
};
const loader = new UnstructuredDirectoryLoader(
"sample-docs",
options
);
const docs = await loader.load();
// console.log(docs);
const vectorStore = await MemoryVectorStore.fromDocuments(docs, new OpenAIEmbeddings());
const retriever = vectorStore.asRetriever();
const prompt = await pull<ChatPromptTemplate>("rlm/rag-prompt");
const llm = new ChatOpenAI({ modelName: "gpt-3.5-turbo", temperature: 0 });
const ragChain = await createStuffDocumentsChain({
llm,
prompt,
outputParser: new StringOutputParser(),
})
const retrievedDocs = await retriever.getRelevantDocuments("what is task decomposition")
const r = await ragChain.invoke({
question: "列出名字和联系方式",
context: retrievedDocs,
})
console.log(r);
}
main();